Injectable chitosan hydrogel effectively controls lesion growth in a venous malformation murine model.

Purpose

The purpose of this study was to evaluate the safety and efficacy of intralesional injection of chitosan hydrogel (CH) combined with sodium tetradecyl sulfate (STS) to sclerose and embolize venous malformations (VMs) by comparison with 3% STS foam and placebo in a mouse model.

Materials and methods

Subcutaneous VMs were created by injecting HUVEC_TIE2-L914F cells, mixed with matrigel, into the back of athymic mice (Day [D] 0). After VM-like lesions were established at D10, 70 lesions were randomly assigned to one of six treatment groups (untreated, saline, 3% STS-foam, CH, 1% STS-CH, 3% STS-CH). For 3% STS-foam, the standard Tessari technique was performed. VMs were regularly evaluated every 2-3 days to measure lesion size until the time of collection at D30 (primary endpoint). At D30, VM lesions including the matrigel plugs were culled and evaluated by histological analysis to assess vessel size, chitosan distribution and endothelial expression. One-way analysis of variance (ANOVA) test was performed to compare quantitative variables with normal distribution, otherwise Kruskal-Wallis test followed by pairwise comparisons by a Wilcoxon rank sum test was performed.

Results

All VMs were successfully punctured and injected. Six VMs injected with 3% STS-CH showed early skin ulceration with an extrusion of the matrigel plug and were excluded from final analysis. In the remaining 64 VMs, skin ulceration occurred on 26 plugs, resulting in the loss of three 3% STS-foam and one 1% STS-CH plugs. Both chitosan formulations effectively controlled growth of VMs by the end of follow-up compared to untreated or 3% STS-foam groups (P < 0.05). Vessel sizes were smaller with both CH formulations compared to untreated and saline groups (P < 0.05). Additionally, there were smaller vascular channels within the 1% STS-CH group compared to the 3% STS-foam group (P < 0.05).

Conclusion

Chitosan's ability to control the growth of VMs suggests a promising therapeutic effect that outperforms the gold standard (STS-foam) on several variables.

Copyright © 2024 Société française de radiologie. Published by Elsevier Masson SAS. All rights reserved.

Overview publication

TitleInjectable chitosan hydrogel effectively controls lesion growth in a venous malformation murine model.
Date2024-08-02
Issue nameDiagnostic and interventional imaging
Issue numberpubmed:39095271
DOI10.1016/j.diii.2024.07.004
PubMed39095271
AuthorsNguyen HL, Holderbaum Do Amaral R, Lerouge S, De Roo AK, Zehtabi F, Vikkula M & Soulez G
KeywordsChitosan hydrogel, Mice, Sclerosis, Sodium tetradecyl sulfate, Vascular malformation
Read Read publication